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Abstract

This paper discusses an in-depth analysis and a solution guide for
the OPCDE Challenge. The crackme is rather straight-forward and
simple for the experienced reverser. However, for a beginner it could
be problematic due to the nature of the protection and calculation
method. I am going to show a couple of ways to explore how to
attack it. Ranging from a pure abstract static analysis, dynamic anal-
ysis using a debugger, Concolic and Symbolic execution to Constraint
solvers.



“with reverse engineering, everything is open-source”
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1 Introduction

Reverse Engineering is an art involving the extraction of knowledge or design
information from anything man-made and re-producing it or re-producing
anything based on the extracted information. This process involves disas-
sembling binary files to their equivalent machine code in order to analyze its
components and workings in detail.

2 Prerequisites

Before we jump into the analysis and solution, the reader is expected to at
least have a basic understanding of the following items:

• x86 Assembly Language.

– General purpose registers.

– General purpose instructions.

• x86 Architecture.

3 Outer Layer Analysis

In this section, we will examine the binary file from the outer layer only. The
more we understand about the binary file and the more information we can
gather, will eventually allow us to be able to solve it.

3.1 File Format Information

We have to examine the binary file format first, to look for some hints or
extra information that could be useful in the analysis later on.

In figure 1, we can see the most common information regarding the binary
file. Information like the linker and compiler, entry-point, number of sections
and so forth could be very useful in the analysis.
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Figure 1: Main PE Structure

In figure 2, we can see the extra information about the binary file. It shows
that it was compiled with a Microsoft Visual C compiler and linked with
Microsoft Linker 14.0. This means that the binary file was definitely written
using Visual Studio 2015. Sometimes its easy to fake this information, but so
far we can trust it and look for more evidence to support such assumption.

Figure 2: Linker/Compiler Signature

In figure 3, we can see the PE basic information. The ImageBase looks
normal. There is no checksum, which is also fine. The SizeOfImage is rather
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big, which is normal given the fact that this is a C/C++ application written
under Visual Studio. It always adds a lot of extra code for the C Run-Time
library and other security protections. We notice that the Subsystem value
is 3 which means that this is a console application.

Figure 3: Basic PE Info

In figure 4, we can see the sections of the PE binary file. The values
listed shows the location, size and flags of the PE binary file on disk. We
can also notice the entropy value for each section. This is very important
information, since it can conclude whether a section is packed or not based
on how high the entropy is. It seems that there is no packing in those sections
especially the .text section which contains the main code we are interested
in analyzing.

Figure 4: PE Sections
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In figure 5, we can see the graph for the entropy of the whole binary file,
the highlighted part is the entropy for the .text section only. As I have
mentioned earlier, the entropy is rather high, but this is not an abnormal
indicator. Overall, the entropy across the binary file is normally distributed
and there are no abnormal peaks in it.

Figure 5: PE Section(s) Entropy

In figure 6, we can see the information for the file header of the PE NT
headers of the binary file. We can see that the Machine is 014C which means
it is meant to run on i386 or 32-bit architecture platform. There are 5
sections as we also saw before in listing 4. Pretty normal properties and
values as well.
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Figure 6: PE NT Header

In figure 7, we can see the information for the optional header of the PE
NT headers of the binary file. We can see that the Magic is 010B which
means it is a 32-bit PE EXE file. Most of the other information won’t be of
much importance to use, since they are all virtual addresses that is relative
to the code and data that resides in their appropriate sections. Things look
good in this part as well.

Figure 7: PE Optional Header
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In figure 8, we can see the information for the imports of the PE EXE
file. We can see that the crackme only imports Kernel32 DLL. So it seems
that there won’t be much interaction between the crackme and other external
resources. Most of the imported APIs are essentially used by the C Run-time
library of Visual Studio, so we should not be bothered by that for now.

Figure 8: PE Imports

In figure 9, we can see the information for all the directories of the PE
EXE file. We can see that the crackme makes use of some of the directories
available in the PE EXE structure. However, we are only interested in some
of them. Those interesting directories are IMPORT, BASERELOC, DEBUG and
LOAD_CONFIG. The IMPORT is the directory that holds all of the information
regarding the APIs imported by the crackme. That can be functions that
are used to interact with external resources. We have already covered that
in previously in figure 8. The BASERELOC is the directory that holds all of the
information regarding base relocation addresses used by the PE EXE during
run-time in memory. This information is not very important to us, since it
is not going to affect our analysis at all. The DEBUG is the directory that
holds all of the information regarding debugging symbols for the binary file.
This can be very useful during the analysis because we can uncover some
code that can be identified using its debugging symbols, thereby making
the readability of the code later on, much easier. The LOAD_CONFIG is the
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directory that holds all of the information regarding the crackme’s initial
startup code. It’s important also to notice whether a TLS section exists or
not, as of the possibility of hiding code inside that section, in which that
could confuse some people while doing the analysis.

Figure 9: PE Directories

In figure 10, we can see the information for the DEBUG directory which
contains information regarding the debugging symbols of the binary file. The
debug directory is an array of IMAGE_DEBUG_DIRECTORY structures. These
structures hold information about the type, size, and location of the various
types of debug information stored in the file. Four main types of debug
information appear: CodeView, 12, 13 and 14. This is just some information
that is useful to know while analyzing the crackme. It seems that the binary
file wasn’t stripped from the debugging information that is associated with
the binary file.
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Figure 10: PE Debug Directory Info

In figure 11, we can see the information for the TLS (Thread Local Stor-
age) directory which contains all of the information regarding that section
of the PE EXE file. This is useful because it can cause certain code to start
executing before the main startup code of the entry-point. Also it holds
other information regarding SEH (Structured Exception Handling) which is
needed for the OS in order to catch exceptions if they ever occur during the
execution of the code.
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Figure 11: PE Load Config (TLS) Info

4 Inner Layer Analysis

In this section, we will examine the binary file from the inner layer. We will
examine the assembly dead listing obtained by disassembling the binary file.

4.1 Disassembly

This section will show and explain the identification of various important
locations throughout the code of the binary file. It is imperative that we
pin point important locations to analyze so as not to waste our time nor
resources with the analysis of runtime/shared libraries.
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4.1.1 Startup Entry-Point

After disassembling the binary file, we look for the main entry-point as shown
in listing 1 in order to start tracing through the code for some interesting
locations. I have already renamed the locations, local variable name and
function parameters as well so it can be understood and followed easily.

This looks very typical for a Visual C application written under Visual
Studio. All we need to do right now is to find out the location for the
main/wmain function so we can start analyzing the main code for the crackme.
We go ahead and follow the jump located at address 004013F0 to the function
?__scrt_common_main_seh@@YAHXZ located at address 0040127C.

1 .text:004013EB public start

2 .text:004013EB start proc near

3 .text:004013EB call ___security_init_cookie

4 .text:004013EB

5 .text:004013F0 jmp ?__scrt_common_main_seh@@YAHXZ

6 .text:004013F0

7 .text:004013F0 start endp

Listing 1: Entry-Point 1

Jumping to the address 0040127C as shown in listing 2, we come across
a classic entry point for the Visual C Run-time library produced by Visual
Studio. We examine the function starting with the prologue of setting up
a SEH handler, following some other code for other initialization that the
library might need, after that we can see the call to the _main function, then
following that comes the end of the function with the epilogue to perform
some clean-ups before exiting the function. Since we are only interested in
the _main function, we will follow it to address 004010F0.
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1 .text:0040127C push 14h

2 .text:0040127E push offset stru_41CF70

3 .text:00401283 call __SEH_prolog4

4 .text:00401283

5 .text:00401283 [...]

6 .text:00401283

7 .text:0040136B push eax ; envp

8 .text:0040136C push dword ptr [edi] ; argv

9 .text:0040136E push dword ptr [esi] ; argc

10 .text:00401370 call _main

11 .text:00401370

12 .text:00401370 [...]

13 .text:004013E5

14 .text:004013E5 call __SEH_epilog4

15 .text:004013E5

16 .text:004013EA retn

Listing 2: Entry-Point 2

The standard definition for the main function in C language is shown in
listing 3. We can use this definition in uncovering the parameters passed
to the function as well as the manipulation of those parameters inside the
function.

1 int __cdecl main(int argc, const char **argv, const char **envp)

Listing 3: Standard C Entry-Point Definition

4.1.2 main/wmain Entry-Point

Arriving to address 004010F0, we find the _main function. Starting from
this point, we could consider to begin the analysis of the main logic of the
crackme.

Listing 4 shows the parameters passed to the function as well as the
variables being used internally. As defined earlier in listing 3 we can see the
three parameters argc, argv and envp. We also see that the function is using
the two variables var_4 and var_8 internally.
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1 .text:004010F0 _main proc near

2 .text:004010F0

3 .text:004010F0 var_8 = dword ptr -8

4 .text:004010F0 var_4 = dword ptr -4

5 .text:004010F0 argc = dword ptr 8

6 .text:004010F0 argv = dword ptr 0Ch

7 .text:004010F0 envp = dword ptr 10h

8 .text:004010F0

9 .text:004010F0 [...]

Listing 4: wmain 1

In listing 5, address 004010F0 marks the initial entry point for _main

function. It starts by saving the current base pointer and allocating space on
the stack for the variables. Some code from the Visual C Run-time library is
observed for security purposes. We can neglect that part as it has no value
in the analysis of the crackme.

Starting from address 00401104 to address 00401110, the crackme simply
prints the first banner to the console. Moving forward from address 00401115
to address 0040111A, the crackme prints out the second banner to the console.
Those are just simple instructions to the reverser and a little bit of copyright
to the crackme associated with the conference OPCDE .

A comparison at address 00401122 and address 00401126 is performed to
check whether the user has passed 2 or more arguments to the crackme or not.
Therefore, a check against argc is carried out and a decision is then made to
jump to address 0040114B if the comparison yielded TRUE or jump continue
execution the following address 00401128. If the comparison yielded FALSE.
In the case of the comparison resulting in TRUE, then the crackme moves on
to the following part where it should start its core logic. However, in the
case of the comparison resulting in FALSE, then the crackme will print out
to the console the instructions needed in order to execute it properly. This
is noticed between address 00401128 and address 00401132. At this point,
the crackme simply performs some clean-ups and then exits.
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1 .text:004010F0 push ebp

2 .text:004010F1 mov ebp, esp

3 .text:004010F3 sub esp, 8

4 .text:004010F6 mov eax, ___security_cookie

5 .text:004010FB xor eax, ebp

6 .text:004010FD mov [ebp+var_4], eax

7 .text:00401100 push esi

8 .text:00401101 mov esi, [ebp+argv]

9 .text:00401104 push offset aOpcde_2017Crac

10 .text:00401109 mov [ebp+var_8], 0

11 .text:00401110 call sub_401020

12 .text:00401110

13 .text:00401115 push offset aHttpWww_opcde_

14 .text:0040111A call sub_401020

15 .text:0040111A

16 .text:0040111F add esp, 8

17 .text:00401122 cmp [ebp+argc], 2

18 .text:00401126 jge short loc_40114B

19 .text:00401126

20 .text:00401128 push offset aChallenge_exe

21 .text:0040112D push offset aUsageSCode

22 .text:00401132 call sub_401020

23 .text:00401132

24 .text:00401137 add esp, 8

25 .text:0040113A xor al, al

26 .text:0040113C pop esi

27 .text:0040113D mov ecx, [ebp+var_4]

28 .text:00401140 xor ecx, ebp

29 .text:00401142 call @__security_check_cookie@4

30 .text:00401142

31 .text:00401147 mov esp, ebp

32 .text:00401149 pop ebp

33 .text:0040114A retn

34 .text:0040114A

35 .text:0040114A [...]

Listing 5: wmain 2

Earlier, we mentioned that there is a comparison performed on argc

which will require the user to input an argument and pass it to the crackme
from the command prompt. Given such requirement for the TRUE condition
(branch) to succeed, this leads us to the core logic of the crackme.
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In listing 6 starting from address 0040114E to address 00401157 will
pass the first argument in the array argv (argv[1]), the string “%x” (string
format denoting that it is in a hexadecimal format) and finally eax (will
hold the value of the output of the function ConvertHexStrToHexDWORD). It
was relatively easy to actually guess what the function does based on the
parameters passed to it. Hence, that is why this function was named to
ConvertHexStrToHexDWORD. Therefore, we can understand that the crackme
expects us to input a string as the argument passed to it from the command
prompt. This string will require to be some sort of a hexadecimal value in
which the calculation of the magic code will definitely depend on it.

In the next code block that starts from address 0040115C to address
0040115F, the function VM_EXECUTE will take the value returned from the
previous function ConvertHexStrToHexDWORD as a parameter (referenced by
eax). This function was named to VM_EXECUTE after some analysis was car-
ried out that showed that the crackme has an internal VM empowering some
processing that will affect the comparison and calculation of such magic code.
We will investigate this function and its internals more thoroughly later on.

Moving forward to the next code block starting from address 00401167

to address 00401176, a comparison is carried out between the result from
the previous function VM_EXECUTE and the value 0FF37F33Bh. This is a clear
hint that the previous function VM_EXECUTE is in fact the one responsible for
the calculation of the magic code. At this point a decision has to be made
whether to print out a success message to the reverser on the command
prompt denoting that this is the TRUE condition or print out a failed message
to the reverser on the command prompt denoting that this is the FALSE

condition. The TRUE condition will continue the execution of the crackme
to the following address 0040116E, while the FALSE condition will jump out
of this code block and change the execution of the crackme to the following
address 0040118F.

The remaining code block starting from address 0040117B to address
0040118E basically adjusts the stack and ensures that the security check
cookie of the function before it returns was correct (this is a security feature)
and then simply returns or exits.
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1 .text:0040114B [...]

2 .text:0040114B

3 .text:0040114B loc_40114B:

4 .text:0040114B lea eax, [ebp+var_8]

5 .text:0040114E push eax

6 .text:0040114F push offset asc_41C9DC

7 .text:00401154 push dword ptr [esi+4]

8 .text:00401157 call ConvertHexStrToHexDWORD

9 .text:00401157

10 .text:0040115C push [ebp+var_8]

11 .text:0040115F call VM_EXECUTE

12 .text:0040115F

13 .text:00401164 add esp, 10h

14 .text:00401167 cmp eax, 0FF37F33Bh

15 .text:0040116C jnz short loc_40118F

16 .text:0040116C

17 .text:0040116E push dword ptr [esi+4]

18 .text:00401171 push offset aGoodboy_Please

19 .text:00401176 call sub_401020

20 .text:00401176

21 .text:0040117B add esp, 8

22 .text:0040117E mov al, 1

23 .text:00401180 pop esi

24 .text:00401181 mov ecx, [ebp+var_4]

25 .text:00401184 xor ecx, ebp

26 .text:00401186 call @__security_check_cookie@4

27 .text:00401186

28 .text:0040118B mov esp, ebp

29 .text:0040118D pop ebp

30 .text:0040118E retn

31 .text:0040118E

32 .text:0040118E [...]

Listing 6: wmain 3

In listing 6, there was a comparison that was performed and based on the
result from such comparison a decision to branch was made. This code block
is the FALSE condition for such comparison. It denotes that the reverser has
entered the wrong magic code and can still have a chance in buying a ticket
from the website.
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1 .text:0040118F [...]

2 .text:0040118F

3 .text:0040118F loc_40118F:

4 .text:0040118F push offset aYouCanStillBuy

5 .text:00401194 call sub_401020

6 .text:00401194

7 .text:00401199 mov ecx, [ebp+var_4]

8 .text:0040119C add esp, 4

9 .text:0040119F xor ecx, ebp

10 .text:004011A1 mov al, 1

11 .text:004011A3 pop esi

12 .text:004011A4 call @__security_check_cookie@4

13 .text:004011A4

14 .text:004011A9 mov esp, ebp

15 .text:004011AB pop ebp

16 .text:004011AC retn

17 .text:004011AC

18 .text:004011AC _main endp

Listing 7: wmain 4

That’s it for the analysis of the _main function. In figure 12, we can
summarize the call-flow-graph (CFG) to have a better view of what is going
on inside the function. We can also clearly see the decision branches taken
from the two comparisons that were made for both argc and eax, which are
the count of arguments passed to the crackme from the command prompt
and the value returned from the function VM_EXECUTE respectively.
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Figure 12: main CFG

4.1.3 VM Interpreter/Dispatcher Entry-Point

In listing 8, we can see that the function expects only one parameter and it
shows the size of such parameter, so we can go ahead and assume that this
should be a double-word value, since the comparison that was earlier made
in listing 6 at address 00401167 was also a double-word.

1 .text:00401080 VM_EXECUTE proc near

2 .text:00401080

3 .text:00401080 arg_0 = dword ptr 8

4 .text:00401080

5 .text:00401080 [...]

Listing 8: VM EXECUTE 1
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In listing 9, we can see the main logic of VM_EXECUTE function. This
part is the core of the problem. It is imperative to understand how the
VM interpreter handles each instruction and locate each dispatcher for each
handler. This process is the same process as what a regular CPU does. Now,
custom VMs will be different in design and operation. However, they will all
still share similarities from the following list:

– Fetch the instruction: The next instruction is fetched from the mem-
ory address that is currently stored in the program counter (PC), and
stored in the instruction register (IR). At the end of the fetch opera-
tion, the PC points to the next instruction that will be read at the next
cycle.

– Decode the instruction: During this cycle the encoded instruction
present in the IR (Instruction Register) is interpreted by the decoder.

– Read the effective address: In case of a memory instruction (direct
or indirect) the execution phase will be in the next clock pulse. If the
instruction has an indirect address, the effective address is read from
main memory, and any required data is fetched from main memory to
be processed and then placed into data registers (Clock Pulse: T3). If
the instruction is direct, nothing is done at this clock pulses. If this is
an I/O instruction or a Register instruction, the operation is performed
(executed) at clock Pulse.

– Execute the instruction: The control unit of the CPU passes the
decoded information as a sequence of control signals to the relevant
function units of the CPU to perform the actions required by the in-
struction such as reading values from registers, passing them to the
ALU to perform mathematical or logic functions on them, and writing
the result back to a register. If the ALU is involved, it sends a con-
dition signal back to the CU. The result generated by the operation
is stored in the main memory, or sent to an output device. Based on
the condition of any feedback from the ALU, Program Counter may be
updated to a different address from which the next instruction will be
fetched.

Having said that, we can then examine the VM’s interpreter to under-
stand how we can de-construct it internals. Once that is done, we can move

25



on to reversing its process and writing a disassembler to disassemble the
VM’s P-CODE into readable instructions. Starting from this point is where
the real analysis begins. This is where we are going to find out how the magic
code is being calculated and by turn we can work on reversing the algorithm
in order to find the magic code.

In listing 9 at address 00401090, we can see that the first byte of the P-
CODE is being read and stored in EAX with a zero-extend preservation, which
means that the data is moved from a smaller register into a bigger register,
and the sign is ignored. Then we compare value stored in EAX with 10h. If the
comparison yields a TRUE condition, then it jumps to loc_4010AA located at
address 004010AA. However, if the comparison yields a FALSE condition, then
it continues execution to the next instruction located at address 0040109C.
We derive from this part that the byte 10h is in fact an opcode and the
handler for that opcode is loc_4010BF located at address 004010BF. We will
analyze each opcode and its handler in its own part as we follow.

Next, we have another comparison between EAX with the value 1h. If the
comparison yields a TRUE condition, then it jumps to loc_4010AA located at
address 004010AA. However, if the comparison yields a FALSE condition, then
it continues execution to the next instruction located at address 004010A1.
An astute reader will realize that there is a small trick here. The trick is
that this small portion of the VM’s interpreter code was trying to identify
another opcode with the value of 11h. We can find that out by easily starting
forward from address 00401097 and going downwards till address 0040109C.
All we need to do is find the right value that won’t satisfy the constraints of
the first SUB instruction. So we have two options, either start with a higher
number than 10h, or start with a number lower than 10h. If we assumed
that the value of EAX was 11h, this will store the value 10h in EAX, which
won’t satisfy the conditional jump JZ to be taken. Then the second SUB

operation is encountered and it subtracts 1h from EAX which holds the value
10h currently. This will result in storing the value 0h in EAX, which will
satisfy the constraint to jump to its own handler loc_4010AA located at
address 004010AA. This means that if we chose to store a smaller value in
EAX than 10h, this will result in having a negative value in EAX, which doesn’t
satisfy our constraints at all. We derive from this part that the byte 11h is
in fact an opcode and the handler for that opcode is loc_4010AA located at
address 004010AA. We will analyze each opcode and its handler in its own
part as we follow.
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The following code segment located between address 004010A1 and ad-
dress 004010A8 will basically check for the lower part of EAX for the value
0EEh, since at address 00401090 there was a MOVZX instruction which was
overridden by the BYTE cast. Therefor, the lower part of EAX will hold the
value of the byte pointed to by ECX while the higher part of EAX will be
zero’ed out. For example, the value of 01000h will become 00001000h and
so forth. This comparison exactly the same as the one previously discussed.
this small portion of the VM’s interpreter code was trying to identify an-
other opcode with the value of FFh. We can find that out by easily starting
forward from address 00401097 and going downwards till address 004010A1.
All we need to do is to find the right value that won’t satisfy the constraints
of the first SUB instruction located at address 00401097 and the second SUB

instruction located at address 0040109C. We can also just add all three values
10h, 1h and 0EEh all together to get the value of the opcode we are looking
for. Adding all three values together will output the value FFh. If we try out
the value FFh on all three SUB instructions located at addresses 00401097,
0040109C and 004010A1 respectively, we will find out that the constraint is
indeed satisfied and the conditional jump JZ can be taken to its own handler
loc_4010D8 located at address 4010D8. We will analyze each opcode and its
handler in its own part as we follow.

The remaining code block located between address 004010DC and address
004010E2 will simply be called only if the VM’s interpreter encountered
something wrong in the VM’s P-CODE, resulting in returning a rather funny
result which is the value of DEADBEEFh being stored in EAX and returned
back by the function. Typically, we shouldn’t hit this constraint unless the
P-CODE was patched incorrectly. So the author took care of the patching
path. This shouldn’t be a problem to a more experienced reverser though.
However, I find it better to just analyze the VM’s interpreter and disassemble
the P-CODE then reverse it, other than try to patch the P-CODE itself.
Its more elegant and clean. Aside from the fact that more advanced and
complex VMs should have the ability to protect against being patched or
even detecting the presence of patched code, but this is not the case here
and the author clearly stated that patching is not allowed.
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1 .text:00401090 [...]

2 .text:00401090

3 .text:00401090 loc_401090:

4 .text:00401090 movzx eax, byte ptr PCODE[ecx]

5 .text:00401097 sub eax, 10h

6 .text:0040109A jz short loc_4010BF

7 .text:0040109A

8 .text:0040109C sub eax, 1

9 .text:0040109F jz short loc_4010AA

10 .text:0040109F

11 .text:004010A1 sub eax, 0EEh

12 .text:004010A6 jz short loc_4010D8

13 .text:004010A6

14 .text:004010A8 jmp short loc_4010D2

15 .text:004010A8

16 .text:004010AA loc_4010AA

17 .text:004010AA [...]

18 .text:004010BF loc_4010BF:

19 .text:004010BF [...]

20 .text:004010D2 loc_4010D2:

21 .text:004010D2 [...]

22 .text:004010D8 loc_4010D8:

23 .text:004010D8 [...]

24 .text:004010DC loc_4010DC:

25 .text:004010DC mov eax, 0DEADBEEFh

26 .text:004010E1 pop ebp

27 .text:004010E2 retn

Listing 9: VM EXECUTE 2

We jumped to location loc_4010AA located at address 004010AA as shown
in listing 10. In the previous code block the dispatcher assigned this handler
for the opcode 11h. A byte is read from the position where ECX was pointing
to previously, and stored in AL. We increment ECX by two bytes, basically
to point ECX to the next byte in the P-CODE. We can deduct from this
point that ECX is the program counter (PC) mentioned earlier. Then AL is
compared with the value 6h to check the length of the instruction. We will
discuss this later in more detail in a separate section.

After that, EDX is subtracted by the double-word (DWORD) value read
from ECX, which seems to be an Immediate (constant) value. We can deduct
from this that EDX holds the value at which the magic code is being calculated
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from and also that it holds the initial value to start with. So far, we have
obtained some good information on how the VM is working internally. We
move forward to the last unconditional jump JMP located at address 004010BD
which will surely have to prepare the internal state of the CPU to increment
the program counter (PC) assigned to by ECX and so on. This was well
previously explained on how CPUs work internally. We will also examine
that part later on.

1 .text:004010AA loc_4010AA:

2 .text:004010AA mov al, byte ptr (VM_PCODE+1)[ecx]

3 .text:004010B0 add ecx, 2

4 .text:004010B3 cmp al, 6

5 .text:004010B5 jnb short loc_4010DC

6 .text:004010B5

7 .text:004010B7 sub edx, VM_PCODE[ecx]

8 .text:004010BD jmp short loc_4010D2

Listing 10: VM EXECUTE 3 (SUB Handler)

We jumped to location loc_4010BF located at address 004010BF as shown
in listing 11. In listing 9 the dispatcher’s code block assigned this handler
for the opcode 10h. A byte is read from the position where ECX was pointing
to previously, and stored in AL. We increment ECX by two bytes, basically
to point ECX to the next byte in the P-CODE. We can deduct from this
point that ECX is the program counter (PC) mentioned earlier. Then AL is
compared with the value 6h to check the length of the instruction. We will
discuss this later in more detail in a separate section.

After that, EDX is added with the double-word (DWORD) value read from
ECX, which seems to be an Immediate (constant) value. We can deduct from
this that EDX holds the value at which the magic code is being calculated from
and also that it holds the initial value to start with. So far, we have obtained
some good information on how the VM is working internally. We move
forward to the code segment located between address 004010D2 and address
004010D6, we find that the internal state of the CPU is being prepared by
incrementing the program counter (PC) assigned to by ECX. Then it is being
compared with the value 19h which is the value 25 in decimal format. If we
actually follow the address of VM_PCODE inside the binary file, we can find that
the VMs P-CODE consists of 19h (25d) bytes only (ending with FFh). This
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shows that the VM’s interpreter is checking to see if it has finished iterating
over the VM’s P-CODE or not so it can either continue or stop execution.
At the point of ECX being less than 19h (25d) then the VM’s interpreter will
reset the state of the CPU again and jump to location loc_401090 located at
address 00401090 to repeat this process once again till it finishes interpreting
all of the VM’s P-CODE.

1 .text:004010BF loc_4010BF:

2 .text:004010BF mov al, byte ptr (VM_PCODE+1)[ecx]

3 .text:004010C5 add ecx, 2

4 .text:004010C8 cmp al, 6

5 .text:004010CA jnb short loc_4010DC

6 .text:004010CA

7 .text:004010CC add edx, VM_PCODE[ecx]

8 .text:004010CC

9 .text:004010D2

10 .text:004010D2 loc_4010D2:

11 .text:004010D2 inc ecx

12 .text:004010D3 cmp ecx, 19h

13 .text:004010D6 jb short loc_401090

Listing 11: VM EXECUTE 4 (ADD Handler)

In listing 12, we can see the same code segment we have previously an-
alyzed from listing 11. So we don’t have to repeat the analysis, however,
this part can be deduced as the “move-forward” or “continue” iterating and
validating the execution of the VM’s P-CODE.

1 .text:004010D2 loc_4010D2:

2 .text:004010D2 inc ecx

3 .text:004010D3 cmp ecx, 19h

4 .text:004010D6 jb short loc_401090

Listing 12: VM EXECUTE 5

We jumped to location loc_4010D8 located at address 004010D8 as shown
in listing 13. In listing 9 the dispatcher’s code block assigned this handler
for the opcode FFh. It seems that this handler does nothing except store the
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value of the calculated magic code inside EAX and then the function returns
the magic code in EAX as well. So we can deduct from this point that the
opcode FFh is in fact a RET instruction.

1 .text:004010D8 loc_4010D8:

2 .text:004010D8 mov eax, edx

3 .text:004010DA pop ebp

4 .text:004010DB retn

Listing 13: VM EXECUTE 6 (RET Handler)

In listing 14, we can see the following code segment, which we previously
briefly discussed as being the error landing location on whether the instruc-
tion length was greater than the value of 6h bytes. This code segment will
simply get called only if the VM’s interpreter encountered something wrong
in the VM’s P-CODE, resulting in returning a rather funny result which is the
value of DEADBEEFh being stored in EAX and returned back by the function.

1 .text:004010DB

2 .text:004010DC loc_4010DC:

3 .text:004010DC mov eax, 0DEADBEEFh

4 .text:004010E1 pop ebp

5 .text:004010E2 retn

6 .text:004010E2

7 .text:004010E2 VM_EXECUTE endp

Listing 14: VM EXECUTE 7
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In figure 13, we can notice the branching and different nodes of which
several comparison instructions are being processed and executed as well as
the appropriate opcode handler for such opcodes. In most cases the CFG of
the VM’s interpreter has a flat CFG so its easy to identify it while analyzing
the code. Since there is a lookup table of some sort ora switch case. Therefor,
we will be able to see all handlers on the same level (in terms of depth) in
the CFG.

Figure 13: VM Dispatcher CFG
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After examining the previous CFG in figure 13 and the disassembled
code in listing 9, we can actually define an exact replica of the algorithm of
the VM’s interpreter as it was reversed (not optimized), which is shown in
algorithm 1.

Algorithm 1: VM’s Interpreter and Dispatcher

Input: PCODE array P , Initialized register R
Result: Integer m

1 PC ⇐ 0
2 RI ⇐ R
3 RV ⇐ 0
4 while P[PC ← PC + 1] 6= 16 do
5 if P[PC] is 17 then
6 RI ← P[PC + 1]
7 PC ← PC + 2
8 if RI > 6 then
9 return 3735928559

10 RV ← RV - P[PC]

11 else if P[PC] is 255 then
12 return RV ;
13 if (PC ← PC + 1) > 25 then
14 return RV

15 end
16 RI ← P[PC + 1]
17 PC ← PC + 2
18 if RI < 6 then
19 RV ← RV + P[PC]
20 if (PC ← PC + 1) > 25 then
21 return RV
22 return 3735928559
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In listing 15, we can see the actual table for the VM’s P-CODE. As we
discussed earlier, it should be a byte array as of the way the VM’s interpreter
parses it. We should not care on how the disassembler has actually decided
to interpret them in terms of display purposes.

1 .data:0041E7B0 VM_PCODE dd 2010010h

2 .data:0041E7B4 dd 110403h

3 .data:0041E7B8 dd 1A7895Eh

4 .data:0041E7BC dd 2FE90011h

5 .data:0041E7C0 dd 100F83h

6 .data:0041E7C4 dd 31B98692h

7 .data:0041E7C8 db 0FFh

Listing 15: VM P-CODE

4.2 VM Analysis

This section will explain the process in identifying and analyzing VM based
code protection. Although, due to the nature of this challenge, not all parts
of a realistic code virtualizer exists. This is because the author was nice
enough to not make it complicated for students initially. However, it’s a
good idea to still talk about it as it serves a good educational reference for
anyone who wishes to get into such challenges.

Typically, in code virtualizers, there are core components that are re-
quired to exist in order for the virtualized code execution to work properly.
Those core components are explained to a certain detail level in the following
sub-sections.

4.2.1 VM Architecture

Just like any traditional x86/x64 micro-processor chip-set, a custom VM
requires almost the same architecture and components that exists inside such
processor. The process of designing a custom VM involves a lot of knowledge
about micro-processors. Therefore, hand crafting a custom VM is not only
a tedious and cumbersome job, but also requires a great deal of attention
to small details that affect the execution cycle(s), branching, or the micro-
processor state itself.
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Luckily this VM architecture is extremely simple and straight-forward,
probably due to the nature of the targeted audience. The following sub-
sections will explain each component of the VM.

4.2.2 VM Instruction Format

A custom VM will implement its own custom instruction encoding format.
This is up to the author to decide while designing the VM in the first place.
But, there are certain universal standards that have to be present and exist
in the instruction encoding format in order to construct a proper one.

Each instruction will be 12 bytes in size. The first byte will represent the
opcode. The second byte will represent the register number (we only have
1 register though). The remaining 4 bytes (double-word) will represent and
Immediate value. Figure 14 illustrates such encoding format.

Op Reg Imm

Figure 14: VM Instruction Encoding

4.2.3 VM Instructions

The VM consists only of three instructions, the ADD, the SUB and RET in-
struction. The algorithm used in calculating the magic code will depend on
the usage of those three instructions.

That shouldn’t be difficult at all. Given the fact that this is just a simple
crackme, we should be okay in finding the algorithm and reversing it. List
15 and 16 shows the syntax, semantics and the proper usage of the VM
instructions.

Instruction: ADD
Syntax: ADD <reg>,<Imm>
Semantics: The ADD instruction adds the data item referred to by its

second operand with the data item referred to by the first
operand, saving it back into the location referred to by its
first operand.

Examples: ADD REG1, 12345678h ; REG1 += 12345678h

Figure 15: VM Instruction: ADD
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Instruction: SUB
Syntax: SUB <reg>,<Imm>
Semantics: The SUB instruction subtracts the data item referred to

by its second operand with the data item referred to by
the first operand, saving it back into the location referred
to by its first operand.

Examples: SUB REG1, 12345678h ; REG1 -= 12345678h

Figure 16: VM Instruction: SUB

Instruction: RET
Syntax: RET

Semantics: The RET instruction returns back the control flow and
exits the current procedure. It could also be an indicator
to halt the CPU.

Examples: RET ; return

Figure 17: VM Instruction: RET

4.2.4 VM P-CODE

We discussed earlier that the VM needs to have its own code to interpret.
This is idea of implementing a custom VM in the first place. We learned
about the construction of the VM earlier with respect to a real CPU. The
P-CODE is the same as assembly language compiled, but in its own encoding
format which follows the architecture or construction of the custom VM. As
previously shown in listing 15, we can observe how a VM’s P-CODE looks
like.

4.2.5 VM Interpreter/Dispatcher

The VM’s interpret is the brain of the VM in general. It is what makes it
work. As we have seen previously in listing 9, the VM’s interpret iterates over
its P-CODE and starts to decode such array in a linear form. The interpreter
then starts to decode each byte in the P-CODE array in order to find out each
of it’s opcodes and then dispatches it to its appropriate handler. The handler
then starts to mimic the operation of an x86 assembler code according to the
opcode or operation that is undergoing at that moment. This process is
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repeated until it reaches the opcode where it tells the VM’s interpreter to
stop fetching more instructions or just halt.

4.2.6 VM Disassembler

In order to understand the VM’s P-CODE, we need to write a disassembler
that can decode it into meaningful instructions so that we can understand ac-
cordingly. We are basically re-creating the code of the VM’s interpreter/dis-
patcher that was found earlier in the binary file. We just need to re-write it in
a High Level Language. Algorithm 2 will demonstrate what the disassembler
algorithm should look like, while listing 16 will show what the disassembler
could be written like.

Algorithm 2: VM’s Disassembler

Input: P-CODE array P
Result: Disassembled P-CODE

1 for PC ← 0 to PC ≤ getArraySize(P) do
2 if P[PC] is 16 then
3 PC ← PC + 1
4 RI ← P[PC ← PC + 1]
5 *R ← &P[PC]
6 RV ← *R
7 print “add reg1, ” + RV

8 else if P[PC] is 17 then
9 PC ← PC + 1

10 RI ← P[PC ← PC + 1]
11 *R ← &P[PC]
12 RV ← *R
13 print “sub reg1, ” + RV

14 else if P[PC] is 255 then
15 print “ret”

16 end
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1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define UBOUND(x) (sizeof(x) / sizeof(x[0]))

5

6 uint8_t PCODE[] = {

7 0x10, 0x0, 0x1, 0x2, 0x3, 0x4, 0x11, 0x0, 0x5E,

8 0x89, 0x0A7, 0x1, 0x11, 0x0, 0x0E9, 0x2F, 0x83,

9 0x0F, 0x10, 0x0, 0x92, 0x86, 0x0B9, 0x31, 0xFF

10 };

11

12 int main(int argc, const char * argv[]) {

13 for (uint8_t Offset = 0; Offset <= UBOUND(PCODE); Offset++) {

14 if (PCODE[Offset] == 0x10) {

15 Offset++;

16 u_long ulRegIndex = PCODE[Offset++];

17 uint32_t *ulReg = (uint32_t *)&PCODE[Offset];

18 uint32_t ulImm = *ulReg;

19

20 fprintf(stdout, "add reg1, %Xh\n", ulImm);

21 }

22 else if (PCODE[Offset] == 0x11) {

23 Offset++;

24 u_long ulRegIndex = PCODE[Offset++];

25 uint32_t *ulReg = (uint32_t *)&PCODE[Offset];

26 uint32_t ulImm = *ulReg;

27

28 fprintf(stdout, "sub reg1, %Xh\n", ulImm);

29 }

30 else if (PCODE[Offset] == 0xFF) {

31 fprintf(stdout, "ret\n");

32 }

33 }

34

35 return EXIT_SUCCESS;

36 }

Listing 16: VM Disassembler
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5 Possible Solutions

In the following sub-sections, I will try to demonstrate 3 different methods in
solving this crackme challenge, although, it is not really necessary. However I
feel this can be used as a good educational reference in the future for anyone
who is trying to get into solving VM based protection crackme challenges.
In reality, sometimes a combination of all three solutions might be required
to solve more complex crackme challenges. Fortunately, this is not the case.

5.1 Abstract Static Analysis

In this solution we will attempt to break the protection and figure out the
correct input parameters for the binary file without having to run or de-
bug it in the first place. This will heavily rely on our solid foundation and
understanding of the Assembly language and its underlying architecture.

Earlier we stopped at writing the disassembler for the VM in order to
disassemble the P-CODE. Continuing to execute the code in listing 16, we
will get the disassembly listing of the VM’s P-CODE. Listing 17 will show
such output.

1 add reg1, 4030201h

2 sub reg1, 1A7895Eh

3 sub reg1, F832FE9h

4 add reg1, 31B98692h

5 ret

Listing 17: VM Disassembled P-CODE

Excellent progress so far, and at this point we can clearly see the algorithm
used to calculate the magic code. All we have to do now is to reverse the al-
gorithm to compute the right magic code. We already know that from listing
6 at address 00331167, there was a comparison with the value FF37F33Bh

which was used for the computed magic code. So we should work our way
from the bottom up. Listing 18 will show the reversed algorithm.

39



1 sub reg1, 4030201h

2 add reg1, 1A7895Eh

3 add reg1, F832FE9h

4 sub reg1, 31B98692h

5 ret

Listing 18: Reversed VM Disassembled P-CODE

Starting with the value FF37F33Bh stored in reg1. We can then follow
the reversed algorithm to find the right magic code.

reg1 = FF37F33B

reg1 = FF37F33B− 04030201 = FB34F13A

reg1 = FB34F13A + 01A7895E = FCDC7A98

reg1 = FCDC7A98 + 0F832FE9 = 10C5FAA81

reg1 = 10C5FAA81− 31B98692 = DAA623EF

⇒ reg1 = DAA623EF

(1)

Now we need to prove that the value we just reversely calculate would
properly calculate the hard-coded value in listing 6 at address 00331167

which is FF37F33B. All we need to do is to just forwardly trace the disassem-
bled P-CODE in listing 17 to prove that the original and reversed algorithm
are equal. Listing

reg1 = DAA623EF

reg1 = DAA623EF + 04030201 = DEA925F0

reg1 = DEA925F0− 01A7895E = DD019C92

reg1 = DD019C92− 0F832FE9 = CD7E6CA9

reg1 = CD7E6CA9 + 31B98692 = FF37F33B

⇒ reg1 = FF37F33B

(2)

Perfect results! As we expected the output from both algorithms matched.
Going backwards to find out the magic code, we traced listing 18, which can
be seen in equation 1. With the magic code found, we consequently move
back again to listing 17 and trace through its code, which can be seen in
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equation 2. The exact value of FF37F33B was the output of such calcula-
tion, which proves that our analysis to the original and reversed P-CODE
disassembly was accurate.

As stated before, this approach to solve the crackme relied only on ab-
stract static analysis, without the aid of a debugger or having to run the
crackme. I find this to be the most elegant solution. A little bit too extreme
in not requiring to use a debugger nor run the crackme at all, but it teaches
us a lot.

5.2 Dynamic Analysis via Debugger

In this solution we will attempt to break the protection and figure out the
correct input parameters for the binary file with the help of the debugger.
This is typically the standard or regular method when analyzing any sort of
binary file. The reason to that is that sometimes there are conditions that
have to be met during runtime and can not really be distinguished under
static analysis only.

We Load up the crackme under the debugger (x64dbg), as shown in figure
18. I chose to use x64dbg as the debugger and not the local debugger in IDA,
simply because I find this one more versatile and quiet packed with a lot of
features. Moving along, we can see the debugger broke on entry of execution,
this is the first step that happens in the OS. We are not interested in this
section so we will let it run until it reaches user code. We can go ahead and
do that.
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Figure 18: Break On Entry of Crackme

In figure 19, we can see we stopped at address 00E213EB. We already
identified that this binary file was compiled with Visual C Compiler/Linker
with Visual Studio earlier in figure 2. By experience I already know where
to jump to and what to skip too, but for a starter or a not very experienced
reverser, he/she could get lost a little but or confused between all that code,
which is the Visual C Run-Time library. Since we have already covered
this before, we will move on and and just skip that call and only follow the
unconditional jump JMP located at address 00E213F0.
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Figure 19: Startup Entry-Point 1

In figure 20, we see that the previous unconditional jump JMP located at
address 00E213F0 took us to this current address 00E2127C. Starting from
this location is the code that basically runs before the main/wmain func-
tion. This long code segment is also known as the WinMainCRTStartup or
wWinMainCRTStartup depending on whether Unicode or ANSI was used dur-
ing compilation. This is actually the real entry-point for any C/C++ written
application compiled with Visual Studio. This function does quiet a lot, but
the following is a small summary of what goes underneath the hood.

– Initializes the global state needed by the CRT.

– Initializes some global state that is used by the compiler. Run-time
checks such as the security cookie used by the compiler flag option
/GS.

– Calls constructors on C++ objects.

– Retrieves command line and start up information provided by the OS
and passes it the main/wmain function.

43



Now we know what is going on under the hood of WinMainCRTStartup
or wWinMainCRTStartup and how it actually works so all we need to do now
is to skip the unnecessary code and locate the code segment which calls
the main/wmain function. We already know that it takes 3 parameters as
previously shown in listing 3, so it shouldn’t be too difficult to locate.

Figure 20: Startup Entry-Point 2

After scrolling down a little bit as shown in figure 21, we can see where
main/wmain is being called. If we look at address 00E21370, we can see the
call to main/wmain and the 3 parameters being pushed at address 00E2136E,
address 00E2136C and address 00E2136B from the bottom up, respectively.
So we need to follow that call to address 00E210F0 to begin our analysis.
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Figure 21: Startup Entry-Point 3

In figure 22, we see the first part of the main entry-point to the main/wmain
function’s code and in figure 23, we see the second part of the main entry-
point to main/wmain function’s code. In the beginning of figure 22, we can
see the function prologue between addresses 00E210F0 and 00E210F3. Look-
ing at the code for a moment, we can then quickly realize that function
sub_E21020 is being called 5 times at address 00E21110, address 00E2111A,
address 00E21132, address 00E21176 and address 00E21194 whenever there
is an output to the command prompt or stdout in general. So we can defi-
nitely skip analyzing this function, as it is of no importance whatsoever.

Next we look at the comparison CMP located at address 00E21122, it looks
like it is checking if the number of arguments passed to the crackme from
the command prompt is more than or equals to the value 2. It is understood
from the fact that EBP is the Base Pointer, and therefore, EBP+8 should point
to the first parameter passed to the function. We should reload the crackme
in the debugger, only this time we should make sure to set the debuggee’s
command line to something to test with, for example, lets use “12345678”
as our input.
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Moving forward to figure 23, we jump to address 00E2114B. We notice
that there is a call at address 00E21157, which takes 3 parameters. This
also doesn’t seem to be an interesting function for us, because if we look at
figure at address 00E2115F we will notice a call which takes 1 parameter,
and a comparison right after it with the value FF37F33B. Based on that
comparison there will be a decision to be made in order to branch to either
the TRUE condition which means that the command line argument supplied
was correct; or the FALSE condition which means that the command line
argument supplied was incorrect.

We conclude from this that the important function to consider checking
first is actually sub_E21080. Because most likely the magic code calculation
algorithm should be found there.

Figure 22: main/wmain Entry-Point 1
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Figure 23: main/wmain Entry-Point 2

In figure 24, we can see the code segment that is probably responsible for
the magic code calculation algorithm. From a dynamic analysis approach,
we will most likely end up going through this function a number of times,
reloading the crackme every time from the start. For the first time, we just
need to examine it for a minute or two, just to understand what’s going on
inside this function.

It seems that at first, the function stores the value of the parameter
passed to it earlier in EDX, this is observed at address 00E21083. At address
00E21090, stepping in through the code we notice that a byte is being read
from a table located at address 00E3E7B0. If we follow that address in the
dump window, we will see a sequence of 25 bytes exactly ending with FF.

We continue stepping-in through the code, and notice that at address
00E21097, the subtraction from EAX with 10h, will yield a zero value and
the comparison instruction CMP right after it will take us to the TRUE branch
located at address 00E210BF.

Next we store a byte from address ECX+00E3E7B1, which will store the
value 0h in AL. We compare AL and the value 6h in order to decide whether
to follow the conditional jump JAE to address 00E210DC or not. This jump
won’t be taken as EAX has the value 0h.
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A double-word (DWORD) is read from the address ECX+E3E7B0 which is
4030201h to add it to the current value store in EDX. ECX is incremented by
one and then compared for whether it is below or equal to the value 19h,
which is the total size of the array we just dumped earlier. Since this is our
first iteration, the jump is taken, and we go to address 00E21090.

We keep tracing through the code until we hit the address 00E210D8,
which moves the contents of EDX and stores it in EAX. At this point EAX

should have the value 36C625C4. We exit this function and return back to
the main/wmain function.

Figure 24: Magic Code Calculation

If we go back to figure 23, we can see that EAX is being compared to
check whether the hard-code value FF37F33B is not equal to each other.
Obviously, they do not match, so the conditional jump JNE will take us to
the TRUE branch where we will hit the part of the crackme which tells us to
try again.

This was just a dry test run to see what is happening dynamically under
the debugger. At this point we should have understood what’s going on in
this function. We reload the crackme again and run it till we hit the function
we were just analyzing located at address 00E21080 as shown in figure 24.
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It is easy to spot a weakness in the crackme at this point. Let me explain
where is it located and why is it a weakness.

As we look inside the function sub_E21080 at address 00E21083, we can
notice that the parameter passed to the function is being stored in EDX. Also,
right before the function terminates, we can see that the contents of EDX is
being moved and stored in EAX. After the function exists and returns back
to the main/wmain function, EAX is compared with the hard-coded value
FF37F33Bh. Clearly we can see a pattern or connection between EDX and
EAX.

That is great, but how can we leverage this to our own advantage? If you
are still reading this paper with good amount of focus, you can quickly realize
that we can trick the crackme with this relation between the two registers
EDX and EAX.

If we restarted our debugging session again and let the crackme run till
sub_E21080 function located at address 00E21080 and then placed a break-
point at address 00E21086. We can then reset the contents of EDX to the
value 0h instead of holding the value of the parameter passed to it, which
is the value of the argument passed to it from the command line. This way
we can control the initial value of EDX from first iteration. We go ahead
and place another break-point at address 00E21086 and let the crackme run
till we hit that break-point we can then find out that the value of EAX is
2491CF4Ch.

Perfect! Now we successfully hacked the crackme to let have it give us
the offset to the magic code that we are supposed to actually find out. This
can be achieved by subtracting the value 2491CF4Ch from FF37F33Bh to get
the value DAA623EFh as shown in equation 3. If we tried running the crackme
from the command prompt while passing this value as the argument, we will
see that the crackme congratulates us.

x = FF37F33B− 2491CF4C

⇒ x = DAA623EF

(3)

Finally, to be honest, this is a poor man’s approach. In no way did we
fully understood the algorithm for calculating the magic code. We didn’t
really reverse anything at all, instead we just hacked our way through the
crackme to solve it.
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5.3 Concolic and Symbolic Execution

In this solution we will attempt to break the protection and figure out the
correct input parameters for the binary file with using a rather novel and has
been an academic topic mostly. Except only recently, this technique has been
starting to get adapted more frequently especially with the evolution of tools
and engines that allows us to do that easily and in a programmatic fashion.
Although, this is not really an easy topic and considered to be complex as
it relies on a lot of mathematical foundations and topics that should be
covered first in order to fully understand how to leverage such technique in
the automation of finding solutions to certain problems. The goal of static
analysis in here is to derive a computable semantic interpretation at some
point.

Before we dive into the solution, let me first give a quick introduction to
the topic and explain some important principles for such approach. Generally
speaking, Concolic execution is a hybrid software verification technique that
performs symbolic execution, a classical technique that treats program vari-
ables as symbolic variables, along a concrete execution (testing on particular
inputs) path. Symbolic execution is used in conjunction with an automated
theorem prover or constraint solver based on constraint logic programming
to generate new concrete inputs (test cases) with the aim of maximizing code
coverage.

Symbolic execution is a means of analyzing a program to determine what
inputs cause each part of a program to execute. An interpreter follows the
program, assuming symbolic values for inputs rather than obtaining actual
inputs as normal execution of the program would, a case of abstract interpre-
tation. It thus arrives at expressions in terms of those symbols for expressions
and variables in the program, and constraints in terms of those symbols for
the possible outcomes of each conditional branch.

Abstract interpretation is a theory of sound approximation of the seman-
tics of computer programs, based on monotonic functions over ordered sets,
especially lattices. It can be viewed as a partial execution of a computer pro-
gram which gains information about its semantics (e.g., control-flow, data-
flow) without performing all the calculations.

Given a programming or specification language, abstract interpretation
consists of giving several semantics linked by relations of abstraction. A
semantic is a mathematical characterization of a possible behavior of the
program. The most precise semantics, describing very closely the actual

50



execution of the program, are called the concrete semantics. For instance,
the concrete semantics of an imperative programming language may associate
to each program the set of execution traces it may produce an execution
trace being a sequence of possible consecutive states of the execution of the
program; a state typically consists of the value of the program counter and
the memory locations (globals, stack and heap). More abstract semantics are
then derived; for instance, one may consider only the set of reachable states in
the executions (which amounts to considering the last states in finite traces).

We can then summarize the whole process of Concolic and symbolic ex-
ecution into the combination of the following points:

– IR lifting: Translates the program binary into a side-effects-free in-
termediate representation for program analysis. Examples of IRs are
the BAP BIL, OpenREIL, Valgrind VEX and LLVM IR.

– Symbolic execution: Expresses the constraints on the inputs needed
to reach parts of a program and to aid in path exploration. Examples
of symbolic execution engines can be found in KLEE, S2E and Triton.

– Constraint solving: Determines the feasible range of inputs to reach
a desired part of a program. Examples of some constraint solvers are
Z3 and STP.

– Taint analysis: Tracks the data and control flows to determine con-
straints that can be controlled by (parts of) user-controllable inputs.

Two great Concolic and symbolic execution engines exists as of now;
Angr and Triton. I prefer to use Triton over Angr, just because of personal
preference. So we will continue this part and this solution method using
Triton.

Triton is a Pin-based Concolic execution framework which provides some
advanced classes to perform dynamic binary analysis (DBA), which was writ-
ten and currently sponsored by Quarkslab. Triton provides components like a
taint engine, a dynamic symbolic execution engine, a snapshot engine, trans-
lation of x64 instruction into SMT2-LIB, a Z3 interface to solve constraints
and Python bindings. Figure 25 illustrates the architecture of Triton.
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Figure 25: Triton’s Architecture

Triton provides a taint engine. This engine applies an over-approximation
but that doesn’t affect the precision. For instance, in exploit development,
what the user wants in reality is knowing if the register is controllable by him-
self and to know what values can hold this register. Answering this question
only with the taint analysis is pretty difficult because a lot of instructions
have an influence on the value that can hold a register (e.g. Path conditions,
arithmetic operations, etc.). So, our personal reflection about this is: How
can we gain time without losing precision?

Symbolic execution offers us the possibility to answer the question: What
value can hold a register? However, by applying a symbolic execution and
asking a model at each program point if a register is controllable is pretty
expensive, therefore, we use an over-approximation to fix the loss of time and
if a register is tainted, we ask a model for the precision.

For example, let’s imagine a 16-bits register [x-x-x---x-xx-x-x] where
“x” are bits that the user can control and “-” bits that the user can’t control.
This state of register is setup like this due to arithmetic operations but may
be something else with a different input value. In this case, it’s not useful
to know what bits are controllable by the user because they will probably
change with another input value. In this case, using a perfect-approximation
or an under-approximation is not useful. What we want is to know what
values can hold this register according to the user’s input.

That’s why Triton uses symbolic execution for precision, and uses over-
approximated tainting to know if we can ask a model to the SMT solver.
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The current step to take is to use IDA along with Ponce plug-in, which
allows us to use the integration of Triton directly with IDA during debugging
and tracing. This is way easier actually than writing a lengthy external script
to do the same thing.

We go ahead and configure the plug-in as shown in figure 26. It is very
important to use the same configuration I chose, so we can do the Dynamic
Symbolic Execution (DSE) correctly.

Figure 26: IDA Ponce Plugin
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Once we have configured the plugin, we can go ahead and start our de-
bugging and tracing session. In order to do it effectively, we will need to
place a couple of breakpoints in certain locations so we can be able to stop
the debugging/tracing session to symbolize the registers we are interested
in as well as the range of memory addresses too. Table 1 will show every
breakpoint address along with the function it is located at as well as the
instruction too.

Breakpoint Address Function Instruction

004010F0 main push ebp
0040116C main jnz short loc 40118F
00401086 VM EXECUTE xor ecx, ecx

Table 1: Breakpoints

We can go ahead and start out debugging/tracing session. Once the
debugger starts it will stop at address 004010F0, as shown in figure 27.

Figure 27: Dynamic Symbolic Execution 1
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We can continue the execution once more till the debugger stops at ad-
dress 00401086, as shown in figure 28.

Figure 28: Dynamic Symbolic Execution 2

At this point we can go ahead and symbolize EDX. The reason we had
the breakpoint at address 00401086 and not at address 00401080 is because
we needed to load EDX first with the parameter passed to the function in
ebp+arg_0. This is very important for the purpose of our dynamic symbolic
execution. We can see this in figure 29. The highlighted instruction is the
one of interest.

Figure 29: Symbolized Register (EDX)
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We will scroll down towards the end of the function to address 004010D8
so we can symbolize EAX as well. This can also be seen in figure 30. The
highlighted instruction is the one of interest.

Figure 30: Symbolized Register (EAX)

So far so good, we have symbolized the two registers that are crucial
for the dynamic symbolic execution process. Now we need to symbolize the
memory region of VM_EXECUTE function. This is highly essential for the tracer
to be able to trace through the instructions and recognize branches for the
purpose of solving the SMT constraint e need in order to get to the right
branch of the TRUE condition. This is located at the breakpoint we placed
earlier at address 0040116C, which can be seen in figure 31.

Figure 31: SMT Constraint
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In listing 19, we can see the VM_EXECUTE function one more. As previ-
ously mentioned, we will have to symbolize the whole memory region of that
function. We start from address 00401080 to address 004010E2. Mathemat-
ics 101, the function is 99 bytes in size. This can be obtained by subtracting
004010E2 from 00401080. Symbolizing the the whole memory region will
take 100 bytes, just to return back to _main function.

1 .text:00401080 VM_EXECUTE proc near

2 .text:00401080 arg_0 = dword ptr 8

3 .text:00401080

4 .text:00401080 push ebp

5 .text:00401081 mov ebp, esp

6 .text:00401083 mov edx, [ebp+arg_0]

7 .text:00401086 xor ecx, ecx

8 .text:00401088 nop dword ptr [eax+eax+00000000h]

9 .text:00401090 loc_401090:

10 .text:00401090 [...]

11 .text:004010DC loc_4010DC:

12 .text:004010DC mov eax, 0DEADBEEFh

13 .text:004010E1 pop ebp

14 .text:004010E2 retn

15 .text:004010E2 VM_EXECUTE endp

Listing 19: Symbolized Memory

We will continue execution once more and let the debugger run, till it
stops at address 0040116C. This is the main problem we are trying to solve
primarily. We need to tell the SMT engine to solve this constraint so we can
go to the TRUE branch in which the condition of the crackme will show us
the congratulation message. This can be seen in figure 32.

57



Figure 32: Dynamic Symbolic Execution 3

Finally we will ask the SMT engine to solve the formula from address
0040116C to address 0040118F. Of course we do not want to end up at that
address since this is the FALSE branch in which the condition of the crackme
will tell us that we have failed. However, we want to satisfy such condition
so we can reverse the logic of the crackme to actually go to address 0040116E
instead. Doing so will give us the solution to this constraint, which is the
correct magic code required to be passed to the crackme as an argument from
the command line. This can be seen in listing 20.

1 [+] Solving condition at 1

2 [+] Solving formula...

3 [+] Solution found! Values:

4 - SymVar_0 (argc):0x000004

5 - SymVar_103 (Reg edx at address: 0x008f1083):0xdaa623ef

Listing 20: Triton DSE Output
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5.4 Constraint Solver

Basically if we look into figure 33, we can see both the TRUE and FALSE

condition that takes us to either of the try again or congratulations branch
respectively.

Figure 33: Success/Fail in main CFG

We have already identified that its a VM based protection used to calcu-
late the magic code. We wrote a disassembler to disassemble the P-CODE
of the VM and already have the disassembly listing of that VM’s P-CODE.
Although the algorithm is short and can just be solved by our hands and
brain. We can imagine if it was a bit more complicated than that and we
couldn’t just understand how to manually solve it. We can then use the Z3
Theorem Prover to construct a small script to give us the answer automat-
ically by finding out whether the constraints we have given it in the script
is actually modulo satisfiable or not. If we take a look at listing 21 we can
examine such script.
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1 from z3 import *

2

3 # Declare a 32 bit vector representing register eax

4 reg_eax = BitVec('eax', 32)

5

6 # add eax, 4030201

7 eax = reg_eax + 0x4030201

8

9 # sub eax, 1A7895E

10 eax = eax - 0x1A7895E

11

12 # sub eax, F832FE9

13 eax = eax - 0xF832FE9

14

15 # add eax, 31B98692

16 eax = eax + 0x31B98692

17

18 # Create a solver instance

19 s = Solver()

20

21 # Add the constraint

22 s.add(eax == 0xFF37F33B)

23

24 # Check if satisfied

25 if s.check() == sat:

26 print 'sat'

27

28 print '[reg_eax = ' + hex(s.model()[reg_eax].as_long()) + ']'

Listing 21: Magic Code Constraint Solver

After we execute the previous script, we will have find our magic code
printed out to the command prompt. Listing 22 shows such output.

1 $ python solve_opcde.py

2 sat

3 [reg_eax = 0xdaa623ef]

Listing 22: Python Script Output
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6 Extra

We have fully analyzed the crackme and at this time we are capable of ac-
tually decompiling the whole crackme into readable C/C++ source code to
match the original source code of the crackme, if not to a near approxima-
tion at least. In listing 23, we can see the decompiled version of the crackme.
Although, I have changed certain parts on purpose to just make it smaller,
but the functionality and structure should be the same.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 uint8_t PCODE[] = {

5 0x10, 0x00, 0x01, 0x02, 0x03, 0x04, 0x11, 0x00, 0x5E, 0x89, 0xA7,

6 0x01, 0x11, 0x00, 0xE9, 0x2F, 0x83, 0x0F, 0x10, 0x00, 0x92, 0x86,

7 0xB9, 0x31, 0xFF };

8

9 u_long vm_execute(u_long ulParam) {

10 u_long ulValue = ulParam;

11 for (uint8_t Offset = 0; Offset < 0x19; Offset++) {

12 if (PCODE[Offset] == 0x10) {

13 Offset += 2; uint32_t *ulReg = (uint32_t *)&PCODE[Offset];

14 ulValue += *ulReg;

15 } else if (PCODE[Offset] == 0x11) {

16 Offset += 2; uint32_t *ulReg = (uint32_t *)&PCODE[Offset];

17 ulValue -= *ulReg;

18 } else if (PCODE[Offset] == 0xFF) { return ulValue; }

19 }

20 return 0xDEADBEEF;

21 }

22

23 int main(int argc, const char *argv[]) {

24 if (argc <= 1) { printf("usage: opcde-crackme [magic-code]\n"); }

25 else { printf("%s\n", (vm_execute(atol(argv[1]))

26 == 0x0FF37F33B) ? "SUCCESS!":"FAIL!"); }

27 return EXIT_SUCCESS;

28 }

Listing 23: Decompiled Crackme
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We have managed to fit the crackme in exactly 28 lines of code. I could
imagine Matt’s version to be longer and definitely more structured. However,
due to the fact that during compilation a lot of information is lost and it
is impossible to recover at all. Therefor, we can only rewrite it to what
the assembly output generated from what the compiler looks like in the
disassembly listing. Our code is exactly the same and mimicking the assembly
output generated from the compiler. At this point, the crackme is overly
simplified and it doesn’t get any simpler than this!

7 Conclusion

The crackme was simple and straight-forward. Analyzing the code was not
complicated either. However, the introduction of a VM based protection
for the calculation of the magic code is something that most people are not
familiar with. Therefore, it might be problematic a for some to understand
what to do or where to begin. Although the magic code was embedded in
a VM, the main algorithm was too simple and was reversed easily. This
crackme is a perfect example for people who wants to get into reversing
VM based protected crackmes. At the end, we have explored five different
methods of solving this crackme. Each of which having its own advantage
and disadvantage. It is up to the reverser to figure out which method is
appropriate at any given time he/she wishes to solve something similar. My
goal was to present different ideas for different tastes.
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9 Contact

You can contact me directly on my email provided in the first page of this
paper. If you feel the need to send encrypted emails, I am also providing
my GPG key below. Please do not hesitate to email me about further ques-
tions or comments regarding this paper. Everything is highly appreciated of
course.

63



10 GPG Key
-----BEGIN PGP PUBLIC KEY BLOCK-----

Comment: GPGTools - https://gpgtools.org

mQINBFTR0AgBEAClXG20naHU7tfe/AA1WCTCSwx5/484TSU/7w/NFjWmt6gGWOn5

dF8YlQUsP3bs+bzrMo3/+64pTEUsH2pnt0crDgJyHcQZb6IRMWPx1pFi2a36wO05

mP9jhDUmCYiLRlxhNi+1HTLbT5TcjKwHRynysDfbJn4Y6QSoYTqr05vmqUFvFPCC

fmqg/EmHf5D3JiOgxSKy8ID5uzH4JYS4snhJ5cke2zIoF4aCL59Vntk/GQyGlmfB

d4LzaOKQKi4SUW51BpYdqdNjcJqkLrIQFRdyAEHHi9Xff9evudB4CsOGZy3dy8mr

6BiHUXCLuHc4a635oeIMqUMeUq2c/xrcNM0YY9gPNosBzV5i0TzJ/XVlZXYdkc04

D3z6PjPFOP84Z5lEIFmXMbxJ0bHzCGKa3xBu04dhXvBTczFiZv7h8v6kaJSyBEgj

1zRIYABfj29G5s7QWtL6oiN2zUHcA1zmKvUrSoaVwldUTHOaM0HTWmNLYuwy9VaN

BEG+SuI1ZBjzDRTobbb2NiV1Gsgyx4xyPSNNxlLOkttpu+LDmIDhIK3/qC7AvCB3

N9PrT1hfUUD6Eq7M6s/0siGGHyXdS5OJvdqsQ5bGkb/qjBgE9ZgZj1hQZDBi9Xq+

6CCHnRnXM7ysUCZLtLLQbS5sC/Vw5zzEU9BG1V3nk1FQMIOxo6Ar0fUkgwARAQAB

tCRNb2hhbWVkIFNhaGVyIDxpYW1oYWxzdGVuQGdtYWlsLmNvbT6JAj0EEwEKACcF

AlTR0AgCGwMFCQeGH4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ6EzIVXd8

ISxUcA//WqRR4ZcI9kxfAPYlZ8GnottGP6QpCpObdyHcuJlkv4Q2Ez+O5lTGyl+H

b7hbEBfl9EAgTY5FIup28Y5Tco4SyeEjb2EyNxuJjWuJFwpbdeXCz4iTc5hjwWXY

UecRpZmSBbTBWmkxeTn84APatnmIFEriTBGarEZVGpWbrHjKstfp0YzsVnVLsKUt

yp+2qWpYEvCof7GC0s5UbF/J9dNl7I4EXWxdcbnOo6zTfiHocS3yxzFtK3lbleNS

NjgaXG730tkMZDEcxMRfkzW2Rl6sYFDK3E+guQhEDzLBt1zVoqD5oqDNjXvy4TmM

mbe6bx+N0U1LavU/X3AqWt+XDynMvTt9l8WDlaQ0SXaauGbC1Fh9Dmw1A5rjhjw5

qADS9c9b8VJa1zC/LBULsskAsOWQeNjbQzx0y22gNb6stEqv0t3HiTbv5BWa8obS

DCvyQv43n9R67MBlqPkiF9S/jns7vIGHW9AUBoO5IVHo0jt5R65pHU2Wzl/cgiob

oexcTx11XIldkVtaZ8XUfu+dXz4Xhp6gFirK49NHpDR2jHuj5rpWX0i+AiSzYtVr

Jm/t3UWNUZ92BP8zJlKbQAahlvRJCPc2GROruBQI4Q7C1js/cTGZDyQXeadQCaId

0Ov+e0NguAtKa6NoWZ0rLZ/3KMB9bErCdAdeY1nGhUNfS9O6+je5Ag0EVNHQCAEQ

ALOddN7xcVoGkBgl1S3gadE6hSnAzJawRtwDi3ow+cPinjhys9D4h+yss3uzbHw6

AqzlgtE12rOkyiNWKA/ZmkrYseAhXJxkNCkuPSdsW91zHmNdFbkuGtqexROka7FL

uUKoehRNERzxFT5I8Z4jUuVuEVdg1frAVw07f13Q3T/fP/wqjCsONqNmEslk68LP

MFIFSoLlfl4jwRo+rrqLh5h3bhDAEDgOwqHjx9C3cwnVALJvLoZjuiJJIYSGGS7q

SeVQZVsWwITBAifBadQQbl5P3wyJtJwNur6YGbqI+UsPrDyExxzSXqbiPsjhcvUb

EvfcpuDqQE9qmcAPr6F8ouZ8uE6trg0XjgoD9PH85Pm2e/aWk1qTyltV5zDnnYzS

/6OLzU+t70QkZxdz5EbNs8e7WDMwlxSvZ0G4iIP1nReZFNIQZhDwI89I+e/nsD6W

jk5snA6RTKxbTycd4KF6NeeKd/IDClVd5EIekt+2gn/EnYXc6gAKFwcJ3nOw6HN9

BP4e6LGDcBrZQMBn50gavka20vd6sIPSboA6qZyOhVheiR7QfmYjJrx16/XqLabs

Vty+XwePxDdZXD0bmEba+ZN/2caOUQYn6M7L4nO88BymuiLlwiPw6/LKuLvAAANH

PbAIlumcK/62ZAXyvR1jBbdHKCA8I3dScq8fwkD33i+XABEBAAGJAiUEGAEKAA8F

AlTR0AgCGwwFCQeGH4AACgkQ6EzIVXd8ISy++xAAnhJlCJmcGld7CSM4ZUKTfJZC

krok45Ch3IpEtJcWHtvq5AAzjtls4XBnq/fg18rsnDyXG7DgvUnGiJSwiBar0/f1

gySBKHlR+z0ZAhXF2kMcuP6Y6+SxkzdNT2DHChtauQbqpCKiKEHavQ28ui98FMPO

MBz6LBg9X9QSbcTEU3Wy1/lfzCdODfebp4t6tFOUH/ElH48uD3Nt1Iv68vKmp5lu

QQsUR6bmT5bM663banGFii5T4NTlOBkq+78xk8pgcUAvXnCT0AwdrqhjjaNQUkuG

zq4dSVuaRUR785yRCs7HR/isVduILeoqrHslfKK04pLw4Dumd3VpYU7I3n+yL8A9

pn/BwxAp/4hFjR9zRXzCi8F3G0lm6UKdVmU58q5uIbl3Ch+5zbBJLdkOV/T4cU9z

cmPeW5vA6NxeXc72+mltOVzIdnuNS5QIN3/TOVltx1SIFkV005cv0faya5WwIKL3

o08TIbvgCkArzllexzycHQzbqXH1Z0Ovf5RFQ/yLxU8xt3E1HV1LzoS9M0IHsaS1

opbEr/f6gmjOw+dGAdJRLLDZ5tkI3fqsoNuHGGjod/7oPfiy9AmyrZqMK3s6LDzL

OsO5avn9iVSVx7u4gLsMGrHB/bNKSaNhUN8Q04EpNRdnPseG7R4LGvceOTzTPvmk

gbI5T7lFL+uS4iyFk7Y=
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